Etude des monoacides faibles et monobases faibles :

Cas des acides:

Soit une solution d'un monoacide faible AH (par exemple HNO₂) de concentration apportée c. Un acide faible est un acide qui ne réagit pas sur l'eau par une réaction totale.

Nous avons deux réactions au sein du milieu réactionnel :

réaction 1:
$$AH + H_2O = A^- + H_3O^+$$
 $K_1 = K_a = \frac{[A^-][H_3O^+]}{[AH]}$

réaction 2:
$$2H_2O = H_3O^+ + OH^ K_2 = K_e = [H_3O^+][HO^-] = 10^{-14}$$

On fait l'hypothèse suivante : l'autoprotolyse de l'eau (réaction 2) est négligeable. C'est le principe de la réaction prépondérante. $K_1 >> K_2$ (hypothèse valable dans presque tous les cas)

Un tableau d'avancement nous permet alors de déterminer les concentrations de chaque espèce chimique en solution :

Tableau d'avancement:

	AH	H ₂ O	=	A ⁻	$\mathrm{H_3O}^+$
État initial	c	excès		0	0
État final	c - x	excès		x	X

x : avancement molaire volumique de la réaction

Ka =
$$\frac{[A^-][H_3O^+]}{[AH]} = \frac{x^2}{c-x}$$

La résolution de cette équation du second degré nous fournit x et donc les concentrations de chaque espèces en solution.

$$pH = -\log[H_3O^+] = -\log x$$

Attention : Il faut vérifier l'hypothèse de départ et bien examiner si [OH-] << [H₃O⁺]

Si l'acide AH est très faible, sa dissociation est limitée alors c >> x et $K_a = \frac{x^2}{c}$

Soit pH = - log [H₃O⁺] = - log x = - log
$$\sqrt{\frac{K_a}{c}}$$
 = $-\frac{1}{2}$ log $\frac{k_a}{c}$ = $\frac{1}{2}$ (log K_a - log C)

D'où
$$pH = \frac{1}{2}(pK_e - \log c)$$

Attention : il faudra vérifier les deux hypothèses : $[OH^-] \ll [H_3O^+]$ et $[A^-] \ll [AH]$ en déterminant leur concentration avant de valider le résultat.

Exemples d'acide faible : les acides carboxyliques RCOOH, NH_4^+ ...

Cas des bases faibles :

Soit une solution d'une monobase faible A de concentration apportée c. Une base faible est une base qui ne réagit pas sur l'eau par une réaction totale.

Nous avons deux réactions au sein du milieu réactionnel :

réaction 1:
$$A^{-} + H_{2}O = AH + HO^{-}$$
 $K_{1} = K_{b} = \frac{[AH][HO^{-}]}{[A^{-}]}$

réaction 2:
$$2H_2O = H_3O^+ + OH^ k_2 = K_e = [H_3O^+][HO^-] = 10^{-14}$$

On fait l'hypothèse suivante : l'autoprotolyse de l'eau (réaction 2) est négligeable car $K_1 >> K_2$

Un tableau d'avancement nous permet de déterminer les concentrations de chaque espèce chimique en solution :

Tableau d'avancement:

	A ⁻	H ₂ O	AH	HO ⁻
État initial	c	excès	0	0
État final	c - x	excès	x	Х

x : avancement molaire volumique de la réaction

$$K_b = \frac{[AH][HO^-]}{[A^-]} = \frac{x^2}{c - x}$$

La résolution de cette équation du second degré nous fournit x soit [HO⁻] et donc les concentrations de chaque espèces en solution.

$$pH = -\log[H_3O^+] = -\log\frac{K_e}{x}$$

Attention: Il faut vérifier l'hypothèse de départ et bien examiner si [H₃O⁺] << [OH⁻]

Si l'acide A est très faible, sa dissociation est limitée alors c >> x et $K_b = \frac{x^2}{c}$

Soit pH = - log [H₃O⁺] = - log
$$\frac{K_e}{x}$$
 = - log $\frac{K_e}{\sqrt{K_b c}}$

Or
$$k_e = k_a k_b$$
 donc $pH = -\log \sqrt{\frac{K_e^2}{K_b c}} = -\frac{1}{2} \log \frac{K_e^2}{K_b c} = -\frac{1}{2} \log \frac{K_e^2}{K_e c} = -\frac{1}{2} \log \frac{K_e K_a}{c} = -\frac{1}{2} \log \frac{K_e K_a}{c} = -\frac{1}{2} (\log K_e K_a - \log c)$

$$D'où pH = \frac{1}{2} (pK_e + pK_a + \log c)$$

<u>Attention</u>: il faudra vérifier les deux hypothèses : $[OH^-] >> [H_3O^+]$ et $[A^-] >> [AH]$ en déterminant leur concentration avant de valider le résultat.

Exemple d'acide faibles : CH₃COO⁻; NH₃